
Predicate Refinement Heuristics in
Program Verification with CEGAR

Tachio Terauchi (JAIST)
Part of this is joint work with Hiroshi Unno (U. Tsukuba)

1

Predicate Abstraction with CEGAR

Iteratively generate candidate predicates F µ Preds(T)

– until F forms a proof of the given program
• T : background FOL theory (e.g., QFLRA)

2

Abstract
& Check

RefineAdd to F preds. F’
s.t. F’ ` ¼

Counterexample ¼
s.t. F ` ¼

Unsafe

Safe

Much success for imperative programs (SLAM, BLAST, …)
for concurrent programs (Threader, SymmPA, …)
for functional programs (Depcegar, MoCHi, …)

Predicate Refinement

• Input:

– Currently irrefutable counterexample ¼

• i.e., F ` ¼ where F is current candidate pred. set

• Output:

– Set of predicates F’ such that F’ ` ¼

3

Issue:
• There can be multiple (in general, ∞ many) F’ s.t. F’ ` ¼

• Choice of F’ can significantly affect CEGAR performance

Example
(How refinement choice affects CEGAR performance)

a = nondet(); b = nondet();
x = a; y = b; z = 0;
while (nondet()) {
y++;z++;

}
while (z != 0) {

y--;z--;
}
if (a=b && y!=x) { assert false; }

Proof of the program:
• Áinv ≡ a=b)y=x+z

a = nondet(); b = nondet();
x = a; y = b; z = 0;
if (nondet()) {
y++;z++;

}
if (z != 0) {
y--;z--;

}
if (a=b && y!=x) { assert false; }

Counterexample ¼1

Proof of ¼1: { Á0, Á1, Á0ÇÁ1 }
• Á0 ≡ x=a Æ y=b Æ z=0
• Á1 ≡ x=a Æ y=b+1 Æ z=1

Sufficient for ¼1 but not for the program

4

Example
(How refinement choice affects CEGAR performance)

a = nondet(); b = nondet();
x = a; y = b; z = 0;
while (nondet()) {
y++;z++;

}
while (z != 0) {

y--;z--;
}
if (a=b && y!=x) { assert false; } ¼i ≡ Loops unfolded i times

Ái ≡ x = a Æ y = b + i Æ z = i

¼1 : refuted by { Á0, Á1, Á0ÇÁ1}
¼2


¼i : refuted by { ÇF | F µ {Á0 , ..., Ái} }



Proof of the program:
• Áinv ≡ a=b)y=x+z

: refuted by { ÇF | F µ {Á0, Á1, Á2} }

5

CEGAR DIVERGES!

Outline

 Introduction

2. Refinement scheme with convergence guarantee

3. Fast convergence via “small refinements”

6

REFINEMENT SCHEME WITH
GUARANTEED CEGAR CONVERGENCE

Based on [Terauchi, Unno ESOP 2015]

7

Example
(How refinement choice affects CEGAR performance)

a = nondet(); b = nondet();
x = a; y = b; z = 0;
while (nondet()) {
y++;z++;

}
while (z != 0) {

y--;z--;
}
if (a=b && y!=x) { assert false; } ¼i ≡ Loops unfolded i times

Ái ≡ x = a Æ y = b + i Æ z = i

¼1 : refuted by { Á0, Á1, Á0ÇÁ1}
¼2


¼i : refuted by { ÇF | F µ {Á0 , ..., Ái} }



Proof of the program:
• Áinv ≡ a=b)y=x+z

: refuted by { ÇF | F µ {Á0, Á1, Á2} }

8

Key Observation: Áinv refutes every ¼i

∴ Can force convergence by restricting predicates
inferred by refinement

Stratified Refinement [1,2]

• Prepare growing strata of predicate sets:

– Each Li µ Preds(T) is finite

– Preds(T) = i=1
! Li

• In each refinement step:

– Restrict inferred predicates to some Li

– raise Li to next level when no proof of given c.e.x. is in Li

[1] R. Jhala, K. McMillan. Practical and complete approach to predicate refinement. TACAS’06.
[2] K. McMillan. Quantified invariant generation using an interpolating saturation prover. TACAS’08.

・・・L0 L1 L2

GUARANTEED CEGAR CONVERGENCE
• under promise that a proof exists in T

9

Issue with Stratified Refinement

• Refinement step must decide if current Li has
a proof of given counterexample

• i.e., decide if 9F µ Li . F ` ¼

– Such exact finite-predicate-set-restricted proof
search is hard

• cf. ESOP’15 paper for details

Our Goal
More Practical Refinement with Convergence Guarantee
– under the same promise that a proof exists in Preds(T)

10

New Proposal:
Relaxed Stratification

• Prepare strata of predicate set pairs

B0[E0, B1[E1, ... Bi[Ei ...

– Each Bi[Ei µ Preds(T) is finite

– Bi µ Bi+1 for each Bi

– Preds(T) = i=1
! Bi

• In each refinement step:

– Restrict inferred predicates to some Bi[Ei

– Fail to infer preds. and raise level only if no proof is in Bi

Base & Extension

(Exact) stratification is
special case where Ei = ;

Need not to exactly decide existence of proof in Bi or in Bi[Ei
11

Correctness

Theorem: With relaxed stratification, CEGAR
converges under the promise that program can
be proved by Preds(T)

Proof sketch:

– Follows from Key Observation: proof of program
is proof of its counterexamples. Therefore:

• Stratum only goes up to Bi[Ei where Bi ¶ proof of prog.

• Stays in same stratum only for finite number of CEGAR
iterations

12

Outline

 Introduction

2. Refinement scheme with convergence guarantee

 Relaxed Stratification Scheme

b. Concrete instances of relaxed stratification

• “Restricted” recursion-free Horn-clause solvers

c. Experiments

3. CEGAR iteration bound via “small” refinement

13

Horn Clause Constraints

14

Reducing Predicate Refinement to
Horn-clause Solving

Prop: For any ¼, exists recursion-free H¼ such that

 is solution of H¼ , {(P) | P2dom()} ` ¼

Plan: Modify Step 2 so that
• Finds solution from Bi[Ei (not from entire Preds(T))
• Fails to solve only if no solution is in Bi

15

Standard Refinement Algorithm:
1. Build H¼

2. Find solution  of H¼

3. Return { (P) | P2dom() } as inferred predicates

Technical Detour: Tree Interpolation

• Labeled tree (V,E,£) - V: nodes E: edges £: V!Formula(T)

• I: V!Formula(T) is tree interpolant (ITP) of (V,E,£) ,

– For root v 2 V, I(v) = false

– 8v 2 V. £(v) Æ (Æ(v,v’)2E I(v’))) I(v)

– 8v 2 V. vars(I(v)) µ sharedvars(v)

x – y > z

w = 1 y · 0

x · 1 Æ t = 0 z = w + 1

v0

v1 v2

v3
v4 I(v4) = z ¸ w + 1

I(v3) = x · 1

I(v2) = y · 0

I(v1) = x · z

I(v0) = false

vars. occurring both
in & out of subtree
rooted at v

16

Reducing Horn clauses to Tree
Interpolation

Theorem[Rümmer+’13]: Given tree-like clause set H, can build
tree-interpolation instance (VH,EH,£H) s.t.

Can be extended to general recursion-free case (cf. [Rümmer+’13])

– Example:

17

xS – yR > zS

wQ = 1 Æ xP = xS Æ zQ = zS
yR · 0

xP · 1 Æ t = 0 zQ = wQ + 1

vrt

S R

P Q

Review

• We want to:

– Infer solution  of H¼ s.t. ran()  Bi[Ei

– Fail to infer only when no solution of range Bi exists

• Horn-clause to tree interpolation reduction says:

• So, it suffices to do “restricted” tree interpolation:

– Infer tree interpolant I of (VH,EH,£H) s.t. ran(I)  Bi[Ei

– Fail to infer only when no interpolant of range Bi exists

18

Restricted Tree Interpolation

Standard tree interpolation algorithm:
– Input: (V,E,£)

– Use SMT solver to check Æv2V£(v) is UNSAT

• obtain resolution proof deriving “false”

– Compute partial ITPs at each node of resolution proof
• ITP = partial ITP at root node

Modification: theory-level-restricted SMT solving

– Restrict leaf (i.e., theory) level reasoning to only produce
partial ITPs in Bi

• Prototype implementation using template-based technique

Only uses expensive finite preds. res. search at leaf levels

19

Tree Interpolant Generation

• p 2 Atoms(T)

• C ::= p | :p | C Ç C

£C = £ with labels restricted to Atoms(C)

Theorem: Inferred ITP is in Bi
ÆÇ, and some ITP is inferred if

one exists in Bi So, Ei = Bi
ÆÇ

20

Outline

 Introduction

2. Refinement scheme with convergence guarantee

 Relaxed Stratification Scheme

b. Concrete instances of relaxed stratification

• “Restricted” recursion-free Horn-clause solvers
 Theory-level-restricted tree interpolation

ii. Another concrete instance

c. Experiments

3. CEGAR iteration bound via “small” refinement

21

Another Concrete Instance of
Relaxed Stratification Scheme

• “Restricted” Horn clause constraint solver
(again)
Two-phase approach

1. Partition clauses into bounded-size trees

2. Infer restricted solutions to predicate variables at
partition boundaries

3. Infer unrestricted solutions to the rest

Only use expensive finite predicate-restricted search for few
predicate variables

Becomes relaxed stratification under some mild assumptions on
generated counterexample patterns

22

Algorithm Explained Pictorially

23

1. Partition into bounded-size sub-trees
2. Infer restricted solutions to boundary predicate variables

• E.g., via template-based method
 Could also use another relaxed stratification refinement alg. itself

3. Infer unrestricted solutions to the rest
• via standard approaches [Unno+’09,Terauchi’10,Rümmer+’13, etc.]

Theorem: This satisfies the requirements of
relaxed stratification, assuming there is a
“generator” clause set Hgen s.t. any c.ex. is
an unfolding of Hgen

Refinement Algorithm Schemas

• These are actually algorithm schemas

– take other refinement algorithms as modules

– generate refinement algorithms satisfying
requirements of relaxed stratification

See ESOP’15 paper for details

24

Outline

 Introduction

2. Refinement scheme with convergence guarantee

 Relaxed Stratification Scheme

 Concrete instances of relaxed stratification

 “Restricted” Horn clause solvers algorithms
 Theory-level-restricted tree interpolation

 2-phase inference approach via bounded partitioning

c. Experiments

3. Fast convergence via “small refinements”

25

Prototype Implementation

New refinement algorithm

– Algorithm 1 used as module of algorithm 2

– Z3 [1] for template-based constraint solving

– MathSAT5 [2] for unrestricted refinement

• Used as refinement engine of MoCHi [3]

– Software model checker for higher-order
functional programs based on CEGAR

[1] http://z3.codeplex.com/
[2] http://mathsat.fbk.eu/
[3] http://www.kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/

26

Experiment Results:
Individual Refinement Runs

• 318 counterexamples generated from 139 benchmark programs
• Three refinement algorithms:

– New algorithm
– Unrestricted refinement
– Exact stratification 27

Experiment Results:
Overall Verification Performance

• 139 benchmark programs
• MoCHi with each refinement algorithm:

– New algorithm
– Unrestricted refinement
– Exact stratification 28

Outline

 Introduction

 Refinement scheme with convergence guarantee

 Relaxed Stratification Scheme

 Concrete instances of relaxed stratification

 “Restricted” Horn clause solvers algorithms

 Experiments

3. Fast convergence via “small refinements”

29

FAST CONVERGENCE VIA
“SMALL REFINEMENTS”

Based on [Terauchi SAS 2015]

30

Talk so far

Predicate refinement in CEGAR

– Return predicates that refutes given
counterexample

– Clever choice of predicates can make CEGAR
converge

Q: Can we say anything about convergence
speed?

31

Short Answer: YES

Our Result

Small Refinement Heuristic (SRH)
– Refinement phase returns “small” proof of counterexample’s safety

[Hoder+’12][Scholl+’14][Albarghouthi,McMillan’14][Unno,Terauchi’15]

• We will show:

– CEGAR with SRH converges in number of CEGAR
iterations bounded in the size of the proof for the
input program

32

Example (from before)

a = nondet(); b = nondet();
x = a; y = b; z = 0;
while (nondet()) {
y++;z++;

}
while (z != 0) {

y--;z--;
}
if (a=b && y!=x) { assert false; } ¼i ≡ Loops unfolded i times

Ái ≡ x = a Æ y = b + i Æ z = i

¼1 : refuted by { Á0, Á1, Á0ÇÁ1}
¼2


¼i : refuted by { ÇF | F µ {Á0 , ..., Ái} }



Proof of the program:
Áinv ≡ a=b)y=x+z

: refuted by { ÇF | F µ {Á0, Á1, Á2} }

33

Key Observation: Áinv refutes every ¼i

∴ Inferring small refinements should hasten convergence
Refinement will infer Áinv or some other small
proof of program before inferring large Ák’s

How to define “small”?

Proof Size Metric and SRH

Def: size : Pfin(Preds(T)) ! Nat is generic proof size
metric if 9c>0.8n¸0. |{ F | size(F) · n }| · cn

Def: minprfsize(g) = minF 2 { F | F ` g } size(F)

Def: CEGAR with Small Refinement Heuristic (SRH) is
CEGAR with Refine() satisfying:

9poly f. 8¼. if Refine(¼) = F then size(F) · f(minprfsize(¼))

34

g : cex or program

Convergence Bound

Theorem: Suppose proof size metric is generic. Then
CEGAR with SRH converges in number of iterations
bounded exponentially in minprfsize(P).

– Proof: By KEY OBSERVATION and simple counting argument

Corollary: CEGAR with SRH converges in exponential
number of iterations under the promise that program
has polynomial size proof

35

Can a tighter bound be obtained with a more concrete setting?

Bound for CFG-represented Programs

• Assumptions

– Program represented by reducible Control Flow Graph

– Counterexamples are loop-unfoldings of the CFG
• every loop unfolded the same number of times

– Proof is Floyd-style node-wise inductive invariant

– Predicate abstraction is Cartesian predicate abstraction

– size(F) = Á 2 F syntactic_size(Á)

• Theorem: CEGAR with SRH converges in number of
iterations bounded polynomially in minprfsize(P) for
CFG programs.

36

See SAS’15 paper for details

Outline

 Introduction

 Refinement scheme with convergence guarantee

 “Relaxed” Stratification

3. Fast convergence via “small refinements”

 Generic Setting

 exp(minprfsize(P)) CEGAR iteration bound

 CFG-represented Programs

 poly(minprfsize(P)) CEGAR iteration bound (under
various assumptions)

37

Some Thoughts and Future Work

Results on CEGAR iteration bound can be taken as
negative results?

– Inferring small refinements must be hard because
otherwise verification would be easy?
• Substantiates the experience with stratified refinement

Need further investigation
– Hardness of verification w.r.t. “predicate refinement oracles” and

under “small proof promise” seems to be underexplored

38

39

