Predicate Refinement Heuristics in Program Verification with CEGAR

Tachio Terauchi (JAIST)
Part of this is joint work with Hiroshi Unno (U. Tsukuba)
Predicate Abstraction with CEGAR

Iteratively generate **candidate predicates** $F \subseteq \text{Preds}(T)$

– until F forms a proof of the given program

 • T: background FOL theory (e.g., QFLRA)

Much success for imperative programs (SLAM, BLAST, ...)
for concurrent programs (Threader, SymmPA, ...)
for functional programs (Depcegar, MoCHi, ...)
Predicate Refinement

• Input:
 – Currently irrefutable counterexample π
 • i.e., $F \not\models \pi$ where F is current candidate pred. set

• Output:
 – Set of predicates F' such that $F' \models \pi$

Issue:
• There can be multiple (in general, ∞ many) F' s.t. $F' \models \pi$
• Choice of F' can significantly affect CEGAR performance
Example
(How refinement choice affects CEGAR performance)

Proof of the program:
• $\phi_{inv} \equiv a=b \Rightarrow y=x+z$

Counterexample π_1

Proof of π_1: \{ ϕ_0, ϕ_1, $\phi_0 \lor \phi_1$ \}
• $\phi_0 \equiv x=a \land y=b \land z=0$
• $\phi_1 \equiv x=a \land y=b+1 \land z=1$

Sufficient for π_1 but not for the program
Example
(How refinement choice affects CEGAR performance)

\[
a = \text{nondet}(); b = \text{nondet}();
x = a; y = b; z = 0;
\text{while (nondet())} \{
 y++; z++;
\}
\text{while (z \neq 0) } \{
 y--; z--;
\}
\text{if (a=b \&\& y!=x) } \{ \text{assert false; } \}
\]

\(\pi_1\) : refuted by \(\{ \phi_0, \phi_1, \phi_0 \lor \phi_1 \}\)
\(\pi_2\) : refuted by \(\{ \forall F \mid F \subseteq \{\phi_0, \phi_1, \phi_2 \} \}\)
\[\vdots\]
\(\pi_i\) : refuted by \(\{ \forall F \mid F \subseteq \{\phi_0, ..., \phi_i \} \}\)
\[\vdots\]
\(\pi_i \equiv \text{Loops unfolded i times}\)
\(\phi_i \equiv x = a \land y = b + i \land z = i\)

Proof of the program:
• \(\phi_{\text{inv}} \equiv a=b \Rightarrow y=x+z\)

CEGAR DIVERGES!
Outline

✓ Introduction
2. Refinement scheme with convergence guarantee
3. Fast convergence via “small refinements”
Based on [Terauchi, Unno ESOP 2015]

REFINEMENT SCHEME WITH GUARANTEED CEGAR CONVERGENCE
Example
(How refinement choice affects CEGAR performance)

Proof of the program:
• \(\phi_{inv} \equiv a=b \Rightarrow y=x+z \)

Key Observation: \(\phi_{inv} \) refutes every \(\pi_i \)

\(\therefore \) Can force convergence by restricting predicates inferred by refinement
Stratified Refinement [1,2]

• Prepare growing strata of predicate sets:

\[
\bullet \quad \text{Each } L_i \subseteq \text{Preds}(T) \text{ is finite}
\]

\[
\bullet \quad \text{Preds}(T) = \bigcup_{i=1}^{\omega} L_i
\]

• In each refinement step:

\[
\bullet \quad \text{Restrict inferred predicates to some } L_i
\]

\[
\bullet \quad \text{raise } L_i \text{ to next level when no proof of given c.e.x. is in } L_i
\]

GUARANTEED CEGAR CONVERGENCE

• under promise that a proof exists in T

Issue with Stratified Refinement

• Refinement step must decide if current L_i has a proof of given counterexample
 • i.e., decide if $\exists F \subseteq L_i : F \models \pi$
 – Such exact finite-predicate-set-restricted proof search is hard
 • cf. ESOP’15 paper for details

Our Goal

More Practical Refinement with Convergence Guarantee
 – under the same promise that a proof exists in $\text{Preds}(T)$
New Proposal: Relaxed Stratification

• Prepare strata of predicate set pairs
 \[B_0 \cup E_0, \ B_1 \cup E_1, \ldots \ B_i \cup E_i \ldots \]

 \- Each \(B_i \cup E_i \subseteq \text{Preds}(T) \) is finite
 \- \(B_i \subseteq B_{i+1} \) for each \(B_i \)
 \- \(\text{Preds}(T) = \bigcup_{i=1}^{\omega} B_i \)

• In each refinement step:
 \- Restrict inferred predicates to some \(B_i \cup E_i \)
 \- Fail to infer preds. and raise level only if no proof is in \(B_i \)

Need not to exactly decide existence of proof in \(B_i \) or in \(B_i \cup E_i \)

(Exact) stratification is special case where \(E_i = \emptyset \)
Correctness

Theorem: With relaxed stratification, CEGAR converges under the promise that program can be proved by Preds(T)

Proof sketch:

– Follows from **Key Observation:** proof of program is proof of its counterexamples. Therefore:

 • Stratum only goes up to $B_i \cup E_i$ where $B_i \supseteq$ proof of prog.
 • Stays in same stratum only for finite number of CEGAR iterations
Outline

✓ Introduction

2. Refinement scheme with convergence guarantee
 ✓ Relaxed Stratification Scheme
 b. Concrete instances of relaxed stratification
 • “Restricted” recursion-free Horn-clause solvers
 c. Experiments

3. CEGAR iteration bound via “small” refinement
Horn Clause Constraints

Predicate variables \(P, Q, P_1, P_2, \ldots \)

Body clause \(B ::= \theta | P(\vec{x}) | B \land B \)

Horn clause constraint \(hc ::= B \Rightarrow P(\vec{x}) | B \Rightarrow \bot \)

Horn clause constraint set \(H ::= \emptyset | H \cup \{hc\} \)

- \(H \) is satisfiable if \(\exists \sigma : pvars(H) \leftrightarrow \text{Preds}(\mathcal{T}). \forall hc \in H. \models \sigma(hc). \)
- \(H \) is recursion-free if \(\{(P, Q) | \ldots P(\ldots) \cdots \Rightarrow Q(\ldots) \in H\} \) is acyclic.
- \(H \) is tree-like if each \(P \in pvars(H) \) occurs at most once in left of \(\Rightarrow \) and at most once in right of \(\Rightarrow \).
Reducing Predicate Refinement to Horn-clause Solving

Prop: For any π, exists recursion-free H_π such that

σ is solution of $H_\pi \iff \{ \sigma(P) \mid P \in \text{dom}(\sigma) \} \vdash \pi$

Standard Refinement Algorithm:

1. Build H_π
2. Find solution σ of H_π
3. Return $\{ \sigma(P) \mid P \in \text{dom}(\sigma) \}$ as inferred predicates

Plan: Modify Step 2 so that

- Finds solution from $B_i \cup E_i$ (**not from entire Preds(T)**)
- Fails to solve only if no solution is in B_i
Technical Detour: Tree Interpolation

- Labeled tree \((V,E,\Theta)\) - \(V\): nodes \(E\): edges \(\Theta: V \rightarrow \text{Formula}(T)\)
- \(I: V \rightarrow \text{Formula}(T)\) is **tree interpolant (ITP)** of \((V,E,\Theta)\) \iff
 - For root \(v \in V\), \(I(v) = \text{false}\)
 - \(\forall v \in V. \Theta(v) \land (\wedge_{(v,v') \in E} I(v')) \Rightarrow I(v)\)
 - \(\forall v \in V. \text{vars}(I(v)) \subseteq \text{sharedvars}(v)\)

\[
\begin{align*}
I(v_0) &= \text{false} \\
I(v_1) &= x \leq 1 \\
I(v_2) &= y \leq 0 \\
I(v_3) &= x \leq 1 \\
I(v_4) &= z \geq w + 1
\end{align*}
\]

vars. occurring both in & out of subtree rooted at \(v\)
Reducing Horn clauses to Tree Interpolation

Theorem[Rümmer+’13]: Given tree-like clause set H, can build tree-interpolation instance (V_H, E_H, Θ_H) s.t.

\[\{ P \mapsto \lambda x \overrightarrow{P}.I(P) \} \models H \iff I \text{ is tree-interpolant of } (V_H, E_H, \Theta_H) \]

where $V_H = pvars(H) \cup \{ v_{rt} \}$, $v_{rt} \notin pvars(H)$, and $\overrightarrow{x_P}$’s are fresh variables.

Can be extended to general recursion-free case (cf. [Rümmer+’13])

- Example:

$x \leq 1 \land t = 1 \Rightarrow P(x)$	$x_P \leq 1 \land t = 0$
$z = x + 1 \Rightarrow Q(w, z)$	$z_Q = w_Q + 1$
$y \leq 0 \Rightarrow R(y)$	
$w = 1 \land P(x) \land Q(w, z) \Rightarrow S(x, z)$	$w_Q = 1 \land x_P = x_S \land z_Q = z_S$
$x - y > z \land S(x, y) \Rightarrow \bot$	$y_R \leq 0$

\[v_{rt} \]
\[x_S - y_R > z_S \]
Review

• We want to:
 – Infer solution σ of H_π s.t. $\text{ran}(\sigma) \subseteq B_i \cup E_i$
 – Fail to infer only when no solution of range B_i exists

• Horn-clause to tree interpolation reduction says:
 – Infer tree interpolant I of (V_H, E_H, Θ_H) s.t. $\text{ran}(I) \subseteq B_i \cup E_i$
 – Fail to infer only when no interpolant of range B_i exists

$\{P \leftrightarrow \lambda x P. I(P)\}$ is solution of $H \iff I$ is tree interpolant of (V_H, E_H, Θ_H)

• So, it suffices to do “restricted” tree interpolation:
 – Infer tree interpolant I of (V_H, E_H, Θ_H) s.t. $\text{ran}(I) \subseteq B_i \cup E_i$
 – Fail to infer only when no interpolant of range B_i exists
Restricted Tree Interpolation

Standard tree interpolation algorithm:

– Input: \((V,E,\Theta)\)
– Use SMT solver to check \(\bigwedge_{v \in V} \Theta(v)\) is UNSAT
 • obtain resolution proof deriving “false”
– Compute partial ITPs at each node of resolution proof
 • ITP = partial ITP at root node

Modification: theory-level-restricted SMT solving

– Restrict leaf (i.e., theory) level reasoning to only produce partial ITPs in \(B_i\)
 • Prototype implementation using template-based technique

Only uses expensive finite preds. res. search at leaf levels
Tree Interpolant Generation

• \(p \in \text{Atoms}(T) \)

• \(C ::= p \mid \neg p \mid C \lor C \)

\[
\frac{C \land \ldots = \Theta(v')}{(V, E, \Theta) \vdash C : I}
\]

\[
\frac{(V, E, \Theta) \vdash p \lor C_1 : I_1 \quad (V, E, \Theta) \vdash \neg p \lor C_2 : I_2}{(V, E, \Theta) \vdash C_1 \lor C_2 : I}
\]

\[
I = \lambda v. \begin{cases}
\text{false} & \text{if } (v', v) \in E^* \\
\text{true} & \text{otherwise}
\end{cases}
\]

\[
I = \lambda v. \begin{cases}
I_1(v) \land I_2(v) & \text{if } p \in \text{outs}(v) \\
I_1(v) \lor I_2(v) & \text{otherwise}
\end{cases}
\]

\[
\frac{I \text{ is tree itp. of } (V, E, \Theta_C) \text{ where } \text{ran}(I) \subseteq B_i}{(V, E, \Theta) \vdash C : I}
\]

\[
\Theta_C = \Theta \text{ with labels restricted to } \text{Atoms}(C)
\]

Theorem: Inferred ITP is in \(B_i^{\land \lor} \), and some ITP is inferred if one exists in \(B_i \)

\[
\text{So, } E_i = B_i^{\land \lor}
\]
Outline

✓ Introduction

2. Refinement scheme with convergence guarantee
 ✓ Relaxed Stratification Scheme

b. Concrete instances of relaxed stratification
 • “Restricted” recursion-free Horn-clause solvers
 ✓ Theory-level-restricted tree interpolation
 ii. Another concrete instance

c. Experiments

3. CEGAR iteration bound via “small” refinement
Another Concrete Instance of Relaxed Stratification Scheme

• “Restricted” Horn clause constraint solver (again)

Two-phase approach

1. Partition clauses into bounded-size trees
2. Infer restricted solutions to predicate variables at partition boundaries
3. Infer unrestricted solutions to the rest

Only use expensive finite predicate-restricted search for few predicate variables

Becomes relaxed stratification under some mild assumptions on generated counterexample patterns
Algorithm Explained Pictorially

1. Partition into bounded-size sub-trees
2. Infer restricted solutions to boundary predicate variables
 • E.g., via template-based method
 ➢ Could also use another relaxed stratification refinement alg. itself
3. Infer unrestricted solutions to the rest
 • via standard approaches [Unno+’09, Terauchi’10, Rümmer+’13, etc.]

Theorem: This satisfies the requirements of relaxed stratification, assuming there is a “generator” clause set H_{gen} s.t. any c.ex. is an unfolding of H_{gen}
Refinement Algorithm Schemas

• These are actually **algorithm schemas**
 – take other refinement algorithms as modules
 – generate refinement algorithms satisfying requirements of relaxed stratification

See ESOP’15 paper for details
25

Outline

✓ Introduction

2. Refinement scheme with convergence guarantee
 ✓ Relaxed Stratification Scheme
 ✓ Concrete instances of relaxed stratification
 ✓ “Restricted” Horn clause solvers algorithms
 ✓ Theory-level-restricted tree interpolation
 ✓ 2-phase inference approach via bounded partitioning

c. Experiments

3. Fast convergence via “small refinements”
Prototype Implementation

New refinement algorithm

– Algorithm 1 used as module of algorithm 2
– Z3 [1] for template-based constraint solving
– MathSAT5 [2] for unrestricted refinement

• Used as refinement engine of MoCHi [3]
 – Software model checker for higher-order functional programs based on CEGAR

Experiment Results: Individual Refinement Runs

- 318 counterexamples generated from 139 benchmark programs
- Three refinement algorithms:
 - New algorithm
 - Unrestricted refinement
 - Exact stratification
Experiment Results:
Overall Verification Performance

• 139 benchmark programs
• MoCHi with each refinement algorithm:
 – New algorithm
 – Unrestricted refinement
 – Exact stratification
Outline

✓ Introduction
✓ Refinement scheme with convergence guarantee
 ✓ Relaxed Stratification Scheme
 ✓ Concrete instances of relaxed stratification
 ✓ “Restricted” Horn clause solvers algorithms
 ✓ Experiments

3. Fast convergence via “small refinements”
FAST CONVERGENCE VIA “SMALL REFINEMENTS”

Based on [Terauchi SAS 2015]
Talk so far

Predicate refinement in CEGAR

– Return predicates that refutes given counterexample
– Clever choice of predicates can make CEGAR converge

Q: Can we say anything about convergence speed?

Short Answer: YES
Our Result

Small Refinement Heuristic (SRH)

- Refinement phase returns “small” proof of counterexample’s safety
 [Hoder+’12][Scholl+’14][Albarghouthi,McMillan’14][Unno,Terauchi’15]

• We will show:
 - CEGAR with SRH converges in number of CEGAR iterations bounded in the size of the proof for the input program
Example (from before)

```
a = nondet(); b = nondet();
x = a; y = b; z = 0;
while (nondet()) {
    y++; z++;
}
while (z != 0) {
    y--; z--;
}
if (a=b && y!=x) { assert false; }
```

\(\pi_1:\) refuted by \(\{\phi_0, \phi_1, \phi_0 \lor \phi_1\}\)
\(\pi_2:\) refuted by \(\{\forall F \mid F \subseteq \{\phi_0, \phi_1, \phi_2\}\}\)
\(\vdots\)
\(\pi_i:\) refuted by \(\{\forall F \mid F \subseteq \{\phi_0, \ldots, \phi_i\}\}\)
\(\vdots\)

\(\pi_i \equiv \text{Loops unfolded i times}\)
\(\phi_i \equiv x = a \land y = b + i \land z = i\)

Key Observation: \(\phi_{\text{inv}}\) refutes every \(\pi_i\)

\[\therefore\] Inferring small refinements should hasten convergence

Refinement will infer \(\phi_{\text{inv}}\) or some other small proof of program before inferring large \(\phi_k\)'s

How to define “small”?
Proof Size Metric and SRH

Def: \(\text{size} : \mathcal{P}_{\text{fin}}(\text{Preds}(T)) \rightarrow \text{Nat} \) is **generic proof size metric** if \(\exists c > 0. \forall n \geq 0. \left| \{ F \mid \text{size}(F) \leq n \} \right| \leq c^n \)

Def: \(\text{minprfsize}(\gamma) = \min_{F \in \{ F \mid F \vdash \gamma \}} \text{size}(F) \)

\[\gamma : \text{cex or program} \]

Def: CEGAR with **Small Refinement Heuristic (SRH)** is CEGAR with \(\text{Refine}() \) satisfying:

\[\exists \text{poly } f. \forall \pi. \text{ if } \text{Refine}(\pi) = F \text{ then } \text{size}(F) \leq f(\text{minprfsize}(\pi)) \]
Convergence Bound

Theorem: Suppose proof size metric is generic. Then CEGAR with SRH converges in number of iterations bounded exponentially in $\min\text{prfsize}(P)$.

- **Proof:** By KEY OBSERVATION and simple counting argument

Corollary: CEGAR with SRH converges in exponential number of iterations under the promise that program has polynomial size proof

Can a tighter bound be obtained with a more concrete setting?
Bound for CFG-represented Programs

• Assumptions
 – Program represented by reducible Control Flow Graph
 – Counterexamples are loop-unfoldings of the CFG
 • every loop unfolded the same number of times
 – Proof is Floyd-style node-wise inductive invariant
 – Predicate abstraction is Cartesian predicate abstraction
 – \(\text{size}(F) = \sum_{\phi \in F} \text{syntactic_size}(\phi) \)

• Theorem: CEGAR with SRH converges in number of iterations bounded polynomially in \(\text{minprfs}(P) \) for CFG programs.

See SAS’15 paper for details
Outline

✓ Introduction
✓ Refinement scheme with convergence guarantee
 ✓ “Relaxed” Stratification
3. Fast convergence via “small refinements”
 ✓ Generic Setting
 ✓ $\exp(\text{minprfsize}(P))$ CEGAR iteration bound
 ✓ CFG-represented Programs
 ✓ $\text{poly}(\text{minprfsize}(P))$ CEGAR iteration bound (under various assumptions)
Some Thoughts and Future Work

Results on CEGAR iteration bound can be taken as negative results?

– Inferring small refinements must be hard because otherwise verification would be easy?
 • Substantiates the experience with stratified refinement

Need further investigation

– Hardness of verification w.r.t. “predicate refinement oracles” and under “small proof promise” seems to be underexplored