Predicate Refinement Heuristics in Program Verification with CEGAR

Tachio Terauchi (JAIST)Part of this is joint work with Hiroshi Unno (U. Tsukuba)

Predicate Abstraction with CEGAR

Iteratively generate **candidate predicates F** \subseteq Preds(**T**)

- until F forms a proof of the given program
 - **T** : background FOL theory (e.g., QFLRA)

Much success for imperative programs (SLAM, BLAST, ...) for concurrent programs (Threader, SymmPA, ...) for functional programs (Depcegar, MoCHi, ...)

Predicate Refinement

• Input:

– Currently irrefutable counterexample π

- i.e., $F \nvDash \pi$ where F is current candidate pred. set
- Output:
 - Set of predicates F' such that F' $\vdash \pi$

Issue:

- There can be multiple (in general, ∞ many) F' s.t. F' $\vdash \pi$
- Choice of F' can significantly affect CEGAR performance

Example

(How refinement choice affects CEGAR performance)

```
a = nondet(); b = nondet();
x = a; y = b; z = 0;
while (nondet()) {
   y++;z++;
}
while (z != 0) {
   y--;z--;
}
if (a=b && y!=x) { assert false; }
```

Proof of the program:

• $\phi_{inv} \equiv a = b \Rightarrow y = x + z$

Counterexample π_1

```
a = nondet(); b = nondet();
x = a; y = b; z = 0;
if (nondet()) {
    y++;z++;
}
if (z != 0) {
    y--;z--;
}
if (a=b && y!=x) { assert false; }
```

Proof of π_1 : { $\phi_0, \phi_1, \phi_0 \lor \phi_1$ }

- $\phi_0 \equiv x=a \land y=b \land z=0$
- $\phi_1 \equiv x=a \land y=b+1 \land z=1$

Sufficient for π_1 but not for the program

Example

(How refinement choice affects CEGAR performance)

```
a = nondet(); b = nondet();
x = a; y = b; z = 0;
while (nondet()) {
y++;z++;
}
while (z != 0) {
y--;z--;
}
if (a=b && y!=x) { assert false; }
```

Proof of the program:

• $\phi_{inv} \equiv a=b \Rightarrow y=x+z$

 $\begin{aligned} \pi_1 : \text{refuted by} \{ \phi_0, \phi_1, \phi_0 \lor \phi_1 \} \\ \pi_2 : \text{refuted by} \{ \lor \mathsf{F} \mid \mathsf{F} \subseteq \{\phi_0, \phi_1, \phi_2 \} \} \\ \vdots \\ \pi_i : \text{refuted by} \{ \lor \mathsf{F} \mid \mathsf{F} \subseteq \{\phi_0, ..., \phi_i\} \} \\ \vdots \end{aligned}$

 $\pi_i \equiv$ Loops unfolded i times $\phi_i \equiv x = a \land y = b + i \land z = i$

CEGAR DIVERGES!

Outline

- ✓ Introduction
- 2. Refinement scheme with convergence guarantee
- 3. Fast convergence via "small refinements"

Based on [Terauchi, Unno ESOP 2015]

REFINEMENT SCHEME WITH GUARANTEED CEGAR CONVERGENCE

Example

(How refinement choice affects CEGAR performance)

```
a = nondet(); b = nondet();
x = a; y = b; z = 0;
while (nondet()) {
  y++;z++;
}
while (z != 0) {
  y--;z--;
}
if (a=b && y!=x) { assert false; }
```

Proof of the program:

• $\phi_{inv} \equiv a = b \Rightarrow y = x + z \lt$

```
\pi_{1} : \text{refuted by} \{ \phi_{0}, \phi_{1}, \phi_{0} \lor \phi_{1} \}
\pi_{2} : \text{refuted by} \{ \lor \mathsf{F} \mid \mathsf{F} \subseteq \{\phi_{0}, \phi_{1}, \phi_{2} \} \}
\vdots
\pi_{i} : \text{refuted by} \{ \lor \mathsf{F} \mid \mathsf{F} \subseteq \{\phi_{0}, ..., \phi_{i} \} \}
\vdots
\pi_{i} \equiv \text{Loops unfolded i times}
\phi_{i} \equiv \mathsf{x} = \mathsf{a} \land \mathsf{y} = \mathsf{b} + \mathsf{i} \land \mathsf{z} = \mathsf{i}
```

Key Observation: ϕ_{inv} refutes every π_i

Can force convergence by restricting predicates inferred by refinement

Stratified Refinement [1,2]

• Prepare growing strata of predicate sets:

- Each $L_i \subseteq Preds(T)$ is finite
- Preds(T) = $\bigcup_{i=1}^{\omega} L_i$
- In each refinement step:
 - Restrict inferred predicates to some L_i
 - raise L_i to next level when no proof of given c.e.x. is in L_i

GUARANTEED CEGAR CONVERGENCE

under promise that a proof exists in T

[1] R. Jhala, K. McMillan. Practical and complete approach to predicate refinement. TACAS'06.[2] K. McMillan. Quantified invariant generation using an interpolating saturation prover. TACAS'08.

Issue with Stratified Refinement

- Refinement step must decide if current L_i has a proof of given counterexample
 - i.e., decide if $\exists \mathsf{F} \subseteq \mathsf{L_i}$. $\mathsf{F} \vdash \pi$
 - Such exact finite-predicate-set-restricted proof search is hard
 - cf. ESOP'15 paper for details

Our Goal

More Practical Refinement with Convergence Guarantee — under the same promise that a proof exists in Preds(T)

New Proposal: Relaxed Stratification

• Prepare strata of predicate set pairs

$$B_0 \cup E_0, B_1 \cup E_1, \dots B_i \cup E_i \dots$$

Base & Extension

- Each $B_i \cup E_i \subseteq Preds(T)$ is finite
- $B_i \subseteq B_{i+1}$ for each B_i
- Preds(T) = $\bigcup_{i=1}^{\omega} B_i$

(Exact) stratification is special case where $E_i = \emptyset$

- In each refinement step:
 - Restrict inferred predicates to some $B_i \cup E_i$
 - Fail to infer preds. and raise level only if no proof is in B_i

Need not to exactly decide existence of proof in B_i or in $B_i \cup E_i$

Correctness

Theorem: With relaxed stratification, CEGAR converges under the promise that program can be proved by Preds(T)

Proof sketch:

- Follows from Key Observation: proof of program is proof of its counterexamples. Therefore:
 - Stratum only goes up to $B_i \cup E_i$ where $B_i \supseteq$ proof of prog.
 - Stays in same stratum only for finite number of CEGAR iterations

Outline

- ✓ Introduction
- 2. Refinement scheme with convergence guarantee
 - ✓ Relaxed Stratification Scheme
 - b. Concrete instances of relaxed stratification
 - "Restricted" recursion-free Horn-clause solvers
 - c. Experiments
- 3. CEGAR iteration bound via "small" refinement

Horn Clause Constraints

Predicate variables P, Q, P_1, P_2, \ldots

Body clauseB::= $\theta \mid P(\vec{x}) \mid B \land B$ Horn clause constrainthc::= $B \Rightarrow P(\vec{x}) \mid B \Rightarrow \bot$ Horn clause constraint setH::= $\emptyset \mid H \cup \{hc\}$

- *H* is satisfiable if $\exists \sigma : pvars(H) \mapsto \operatorname{Preds}(\mathcal{T}). \forall hc \in H. \models \sigma(hc).$
- *H* is recursion-free if $\{(P,Q) \mid \dots P(\dots) \mapsto Q(\dots) \in H\}$ is acyclic.
- *H* is *tree-like* if each $P \in pvars(H)$ occurs at most once in left of \Rightarrow and at most once in right of \Rightarrow .

Reducing Predicate Refinement to Horn-clause Solving

Prop: For any π , exists recursion-free H_{π} such that

 $\sigma \text{ is solution of H}_{\pi} \Leftrightarrow \{\sigma(\mathsf{P}) \mid \mathsf{P} \in \mathsf{dom}(\sigma)\} \vdash \pi$

Standard Refinement Algorithm:

- 1. Build H_{π}
- 2. Find solution σ of H_{π}
- 3. Return { $\sigma(P) \mid P \in dom(\sigma)$ } as inferred predicates

Plan: Modify Step 2 so that

- Finds solution from $B_i \cup E_i$ (not from entire Preds(T))
- Fails to solve only if no solution is in B_i

Technical Detour: Tree Interpolation

- Labeled tree (V,E, Θ) V: nodes E: edges Θ : V \rightarrow Formula(T)
- *I*: V \rightarrow Formula(T) is **tree interpolant (ITP)** of (V,E, Θ) \Leftrightarrow

- For root
$$v \in V$$
, $I(v) = \text{false}$
- $\forall v \in V$. $\Theta(v) \land (\land_{(v,v') \in E} I(v')) \Rightarrow I(v)$
- $\forall v \in V$. $vars(I(v)) \subseteq \text{sharedvars}(v)$
 $v_3 \quad x \le 1 \land t = 0$
 $v_4 \quad z = w + 1$
 $v_1 \quad w = 1$
 $v_2 \quad y \le 0$
 $v_1 \quad x = 1$
 $v_2 \quad y \le 0$
 $I(v_4) = z \ge w + 1$
 $I(v_3) = x \le 1$
 $I(v_2) = y \le 0$
 $I(v_1) = x \le z$
 $I(v_0) = \text{false}$

Reducing Horn clauses to Tree Interpolation

Theorem[Rümmer+'13]: Given tree-like clause set H, can build tree-interpolation instance (V_H, E_H, Θ_H) s.t.

 $\{P \mapsto \lambda \overrightarrow{x_P} . I(P)\} \models H \Leftrightarrow I \text{ is tree-interpolant of } (V_H, E_H, \Theta_H)$

where $V_H = pvars(H) \cup \{v_{rt}\}, v_{rt} \notin pvars(H)$, and $\overrightarrow{x_P}$'s are fresh variables.

Can be extended to general recursion-free case (cf. [Rümmer+'13])

– Example:

$$\begin{aligned} x &\leq 1 \wedge t = 1 \Rightarrow P(x) \\ z &= x + 1 \Rightarrow Q(w, z) \\ y &\leq 0 \Rightarrow R(y) \\ w &= 1 \wedge P(x) \wedge Q(w, z) \Rightarrow S(x, z) \\ x - y &> z \wedge S(x, y) \Rightarrow \bot \end{aligned}$$

$$P \qquad x_{p} \leq 1 \land t = 0 \qquad Q \qquad z_{Q} = w_{Q} + 1$$

$$S \qquad w_{Q} = 1 \land x_{p} = x_{S} \land z_{Q} = z_{S} \qquad R \qquad y_{R} \leq 0$$

$$v_{rt} \qquad x_{S} - y_{R} > z_{S}$$

Review

- We want to:
 - Infer solution σ of H_{π} s.t. ran(σ) $\subseteq B_i \cup E_i$
 - Fail to infer only when no solution of range B_i exists
- Horn-clause to tree interpolation reduction says: $\{P \mapsto \lambda \overrightarrow{x_P}. I(P)\}$ is solution of $H \Leftrightarrow I$ is tree interpolant of (V_H, E_H, Θ_H)
- So, it suffices to do "restricted" tree interpolation:
 - Infer tree interpolant *I* of (V_H, E_H, Θ_H) s.t. ran $(I) \subseteq B_i \cup E_i$
 - Fail to infer only when no interpolant of range B_i exists

Restricted Tree Interpolation

Standard tree interpolation algorithm:

- Input: (V,E, Θ)
- Use SMT solver to check $\wedge_{v \in V} \Theta(v)$ is UNSAT
 - obtain resolution proof deriving "false"
- Compute partial ITPs at each node of resolution proof
 - ITP = partial ITP at root node

Modification: theory-level-restricted SMT solving

- Restrict leaf (i.e., theory) level reasoning to only produce partial ITPs in B_i
 - Prototype implementation using template-based technique

Only uses expensive finite preds. res. search at leaf levels

Tree Interpolant Generation

- p ∈ Atoms(T)
- C ::= p | $\neg p$ | C \lor C

 $\frac{C \wedge \ldots = \Theta(v')}{(V, E, \Theta) \vdash C : I} \qquad \qquad I = \lambda v. \begin{cases} \texttt{false} & \text{if } (v', v) \in E^* \\ \texttt{true} & \text{otherwise} \end{cases}$

 $\frac{(V, E, \Theta) \vdash p \lor C_1 : I_1 \quad (V, E, \Theta) \vdash \neg p \lor C_2 : I_2}{(V, E, \Theta) \vdash C_1 \lor C_2 : I} \qquad I = \lambda v. \begin{cases} I_1(v) \land I_2(v) \text{ if } p \in outs(v) \\ I_1(v) \lor I_2(v) \text{ otherwise} \end{cases}$

$$\frac{\models_T C}{(V, E, \Theta) \vdash C} \longrightarrow \frac{I \text{ is tree itp. of } (V, E, \Theta_C) \text{ where } ran(I) \subseteq B_i}{(V, E, \Theta) \vdash C : I}$$
$$\Theta_C = \Theta \text{ with labels restricted to Atoms(C)}$$

Theorem: Inferred ITP is in $B_i^{\wedge\vee}$, and some ITP is inferred if one exists in B_i **So,** $E_i = B_i^{\wedge\vee}$

Outline

- ✓ Introduction
- 2. Refinement scheme with convergence guarantee
 - ✓ Relaxed Stratification Scheme
 - b. Concrete instances of relaxed stratification
 - "Restricted" recursion-free Horn-clause solvers
 - ✓ Theory-level-restricted tree interpolation
 - ii. Another concrete instance
 - c. Experiments
- 3. CEGAR iteration bound via "small" refinement

Another Concrete Instance of Relaxed Stratification Scheme

- "Restricted" Horn clause constraint solver (again)
 - **Two-phase approach**
 - 1. Partition clauses into bounded-size trees
 - 2. Infer restricted solutions to predicate variables at partition boundaries
 - 3. Infer unrestricted solutions to the rest

Only use expensive finite predicate-restricted search for few predicate variables

Becomes relaxed stratification under some mild assumptions on generated counterexample patterns

Algorithm Explained Pictorially

- 1. Partition into bounded-size sub-trees
- 2. Infer restricted solutions to boundary predicate variables
 - E.g., via template-based method
 - Could also use another relaxed stratification refinement alg. itself
- **3.** Infer unrestricted solutions to the rest
 - via standard approaches [Unno+'09,Terauchi'10,Rümmer+'13, etc.]

Refinement Algorithm Schemas

- These are actually algorithm schemas
 - take other refinement algorithms as modules
 - generate refinement algorithms satisfying requirements of relaxed stratification
 - See ESOP'15 paper for details

Outline

- ✓ Introduction
- 2. Refinement scheme with convergence guarantee
 - ✓ Relaxed Stratification Scheme
 - ✓ Concrete instances of relaxed stratification
 - ✓ "Restricted" Horn clause solvers algorithms
 - ✓ Theory-level-restricted tree interpolation
 - ✓ 2-phase inference approach via bounded partitioning
 - c. Experiments
- 3. Fast convergence via "small refinements"

Prototype Implementation

New refinement algorithm

- Algorithm 1 used as module of algorithm 2
- Z3 [1] for template-based constraint solving
- MathSAT5 [2] for unrestricted refinement
- Used as refinement engine of MoCHi [3]
 - Software model checker for higher-order functional programs based on CEGAR

[1] http://z3.codeplex.com/
[2] http://mathsat.fbk.eu/
[3] http://www.kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/

Experiment Results: Individual Refinement Runs

• 318 counterexamples generated from 139 benchmark programs

• Three refinement algorithms:

- New algorithm
- Unrestricted refinement
- Exact stratification

Experiment Results: Overall Verification Performance

- 139 benchmark programs
- MoCHi with each refinement algorithm:
 - New algorithm
 - Unrestricted refinement
 - Exact stratification

Outline

- ✓ Introduction
- ✓ Refinement scheme with convergence guarantee
 - ✓ Relaxed Stratification Scheme
 - ✓ Concrete instances of relaxed stratification
 - ✓ "Restricted" Horn clause solvers algorithms
 - ✓ Experiments
- 3. Fast convergence via "small refinements"

Based on [Terauchi SAS 2015]

FAST CONVERGENCE VIA "SMALL REFINEMENTS"

Talk so far

- **Predicate refinement in CEGAR**
 - Return predicates that refutes given counterexample
 - Clever choice of predicates can make CEGAR converge

Q: Can we say anything about convergence speed?

Short Answer: YES

Our Result

Small Refinement Heuristic (SRH)

Refinement phase returns "small" proof of counterexample's safety

[Hoder+'12][Scholl+'14][Albarghouthi,McMillan'14][Unno,Terauchi'15]

• We will show:

 CEGAR with SRH converges in number of CEGAR iterations bounded in the size of the proof for the input program

Example (from before)

```
a = nondet(); b = nondet();
x = a; y = b; z = 0;
while (nondet()) {
  y++;z++;
}
while (z != 0) {
  y--;z--;
}
if (a=b && y!=x) { assert false; }
```

Proof of the program:

 $\phi_{inv} \equiv a = b \Rightarrow y = x + z$

 $\begin{aligned} \pi_1 : \text{refuted by} \{ \phi_0, \phi_1, \phi_0 \lor \phi_1 \} \\ \pi_2 : \text{refuted by} \{ \lor \mathsf{F} \mid \mathsf{F} \subseteq \{\phi_0, \phi_1, \phi_2\} \} \\ \vdots \\ \pi_i : \text{refuted by} \{ \lor \mathsf{F} \mid \mathsf{F} \subseteq \{\phi_0, ..., \phi_i\} \} \\ \vdots \\ \pi_i &\equiv \text{Loops unfolded i times} \end{aligned}$

 $\phi_i \equiv x = a \land y = b + i \land z = i$

Key Observation: $\phi_{
m inv}$ refutes every $\pi_{
m i}$

How to define "small"? How to define "small"? Inferring small refinements should hasten convergence Refinement will infer ϕ_{inv} or some other small proof of program before inferring large ϕ_k 's 33

Proof Size Metric and SRH

Def: size : $\mathcal{P}_{fin}(\operatorname{Preds}(T)) \rightarrow \operatorname{Nat}$ is **generic proof size metric** if $\exists c > 0. \forall n \ge 0$. $|\{F \mid size(F) \le n\}| \le c^n$

Def: minprfsize(
$$\gamma$$
) = min_{F \in {F | F \vdash \gamma}} size(F)
 γ : cex or program

Def: CEGAR with **Small Refinement Heuristic (SRH)** is CEGAR with Refine() satisfying:

 \exists poly f. $\forall \pi$. if Refine(π) = F then size(F) \leq f(minprfsize(π))

Convergence Bound

Theorem: Suppose proof size metric is generic. Then CEGAR with SRH converges in number of iterations bounded exponentially in minprfsize(P).

– Proof: By KEY OBSERVATION and simple counting argument

Corollary: CEGAR with SRH converges in exponential number of iterations under the promise that program has polynomial size proof

Can a tighter bound be obtained with a more concrete setting?

Bound for CFG-represented Programs

- Assumptions
 - Program represented by reducible Control Flow Graph
 - Counterexamples are loop-unfoldings of the CFG
 - every loop unfolded the same number of times
 - Proof is Floyd-style node-wise inductive invariant
 - Predicate abstraction is Cartesian predicate abstraction
 - size(F) = $\sum_{\phi \in F}$ syntactic_size(ϕ)
- Theorem: CEGAR with SRH converges in number of iterations bounded polynomially in minprfsize(P) for CFG programs.

See SAS'15 paper for details

Outline

- \checkmark Introduction
- ✓ Refinement scheme with convergence guarantee
 - ✓ "Relaxed" Stratification
- 3. Fast convergence via "small refinements"
 - ✓ Generic Setting
 - ✓ exp(minprfsize(P)) CEGAR iteration bound
 - ✓ CFG-represented Programs
 - ✓ poly(minprfsize(P)) CEGAR iteration bound (under various assumptions)

Some Thoughts and Future Work

Results on CEGAR iteration bound can be taken as negative results?

- Inferring small refinements must be hard because otherwise verification would be easy?
 - Substantiates the experience with stratified refinement

Need further investigation

 Hardness of verification w.r.t. "predicate refinement oracles" and under "small proof promise" seems to be underexplored