

Removing Unnecessary Variables
from Horn Clause

 Verification Conditions

E. De Angelis (1), F. Fioravanti (1)
 A. Pettorossi (2), M. Proietti (3)

(1) DEC, University ”G. d’Annunzio” of Chieti-Pescara, Italy
(2) DICII, University of Rome Tor Vergata, Roma, Italy

(3) CNR-IASI, Roma, Italy

HCVS'16 – Eindhoven

Talk Outline
● Partial Correctness properties
● Verification Conditions Generation

– using specialization of Constrained Horn Clauses (CHC)
a.k.a. Constraint Logic Programs (CLP)

● Removing unnecessary variables from CHC
– Non-Linking variables Removal strategy

● call dependent
– Constrained FAR algorithm

● call independent
● Variable liveness analysis

● Experimental evaluation

Partial Correctness and VCs
Given the partial correctness property (Hoare triple)

 {x ≥ 0} int x,y; {y > 0}
 main () {
 int z=x+1;
 while (z<=9) {z=z+1;}
 y=z;
 }

VCs satisfiability can (possibly) be checked by using Horn solvers and Satisfiability
Modulo Theory (SMT) solvers like

● CHA (Gallagher et al.), Duality (McMillan), Eldarica (Ruemmer et al.),
MathSAT (Cimatti et al.), QARMC/HSF (Rybalchenko et al.),
SeaHorn (Gurfinkel et al.), TRACER (Jaffar et al.),
VeriMAP (De Angelis et al.), Z3 (Bjorner & De Moura),

Verification Conditions: formulas whose satisfiability implies correctness
 ….. as constrained Horn clauses

incorrect :- X1>=0, newp1(X1,Y1, X2,Y2), Y2=<0.
newp1(X1,Y1,X2,Z2) :- Z1=X1+1, newp2(X1,Y1,Z1,X2,Y2,Z2).
newp2(X1,Y1,Z1,X2,Y2,Z3) :- Z1=<9, Z2=Z1+1,newp2(X1,Y1,Z2,X2,Y2,Z3)
newp2(X1,Y1,Z1,X1,Y1,Z1) :- Z1>=10.

VCs GENeration
Standard approach

– VCGEN algorithm is tailored to the syntax and the semantics of the imperative
programming language

– Cons: changing the programming language or its semantics usually requires
rewriting the VCGEN algorithm

Semantics-based approach
 [Cousot SAS'97, Gallagher et al. SAS'98, J Strother Moore CHARME'03, Rosu et al '14]

– VCGEN algorithm is parametric wrt programming language semantics
– Pro: use the same VCGEN algorithm for different programming languages and

semantics

Our semantics-based approach
– uses CHC encoding of program, semantics and logic
– VCs generated by CHC specialization

● correctness of VC generation follows from correctness of the rules
– Parametricity wrt programming language and class of properties
– Flexibility and efficiency

● Imperative language: subset of CIL (C Intermediate Language)
– assignments, conditionals, jumps, recursive function calls, abort
– loops translated to conditionals and jumps

● Commands encoded as facts: at(Label, Cmd)

Encoding Imperative Programs

CLP encoding of Prog

fun(main,[],[],1).
at(1,asgn(z,plus(x,1))).
at(2,ite(lteq(z,9),3,5)).
at(3,asgn(z,plus(z,1))).
at(4,goto(2)).
at(5,asgn(y,z)).
at(h,halt).

Program Prog

int x, y;

void main() {

int z=x+1; l1
while (z<=9) { l2
 z=z+1; l3

 } l4
y=z; l5

}

Encoding the Operational Semantics
Configurations: cf(LC, Env) program execution state
● LC labeled command: a term of the form cmd(L,C)

– L label, C command
● Env environment: a pair (D,S)

– D global enviroment, S local environment
– Environments as lists of pairs [(x,X),(y,Y),(z,Z)]

Operational semantics: transition relation tr between configurations
tr(cf(LC1,E1), cf(LC2,E2))

Multiple steps reachability (reflexive, transitive closure of tr)
reach(C,C).
reach(C,C2) :- tr(C,C1), reach(C1,C2).

Encoding the Operational Semantics
assignment x=e;

tr(cf(cmd(L, asgn(X,expr(E))), (D,S)), source configuration
 cf(cmd(L1,C), (D1,S1))) :- target configuration
 eval(E,(D,S),V), evaluate expression
 update((D,S),X,V,(D1,S1)), update environment
 nextlab(L,L1), next label
 at(L1,C). next command

Encoding Partial (In)Correctness
Partial correctness property

{x ≥ 0} Prog {y > 0}
CHC encoding of (in)correctness. program I

incorrect :- initConf(Cf), reach(Cf,Cf1), errorConf(Cf1).
 …
 initConf(cf(C, [(x,X),(y,Y)])) :- at(1,C), X>=0.
errorConf(cf(C, [(x,X),(y,Y)])) :- at(h,C), Y=< 0.

Thm. Correctness of CLP Encoding
property does not hold iff incorrect ∈ M(I)

where: M(I) least LIA model of the CLP program I

Undecidable problem. Even if decidable, very hard to check.
Unfold/Fold program specialization for “removing the interpreter” and producing VCs.

Partial Correctness and VCs
Given the partial correctness property (Hoare triple)

 {x ≥ 0} int x,y; {y > 0}
 main () {
 int z=x+1;
 while (z<=9) {z=z+1;}
 y=z;
 }

Verification Conditions as constrained Horn clauses

 incorrect :- X1>=0, newp1(X1,Y1, X2,Y2), Y2=<0. program execution
(call to the main() function)

 newp1(X1,Y1,X2,Z2) :- Z1=X1+1, newp2(X1,Y1,Z1,X2,Y2,Z2). loop initialization

 newp2(X1,Y1,Z1,X2,Y2,Z2) :- Z1=<9, Z3=Z1+1,newp2(X1,Y1,Z3,X2,Y2,Z2)
 loop iteration

 newp2(X1,Y1,Z1,X1,Y1,Z1) :- Z1>=10. loop exit

Unnecessary variables
● It is well-known that transformational

approaches may produce unnecessary
variables

● Two solutions from LP (adapted to CHC)
for removing (some) unnecessary variables
– Non-linking variables strategy

● call dependent
– Constrained FAR algorithm

● call independent
● variable liveness analysis

Non-Linking variables Removal

Verification Conditions after application of the NLR strategy

incorrect
NLR

 :- X1>=0, newp3(X1,Y2), Y2=<0.
newp3(X1,Z2) :- Z1=X1+1, newp4(X1,Z1,Z2).
newp4(X1,Z1,Z2) :- Z1=<9, Z3=Z1+1,newp4(X1,Z3,Z2)
newp4(X1,Z1,Z1) :- Z1>=10.

Let C be a clause of the form H :- c, L, B , R

A variable occurring in B is non-linking in C if it does not occur in the rest of the
clause

Non-linking variables can be removed from the call

Verification Conditions after VCG

incorrect :- X1>=0, newp1(X1,Y1, X2,Y2), Y2=<0.
newp1(X1,Y1,X2,Y2) :- Z1=X1+1, newp2(X1,Y1,Z1,X2, Y2, Z2).
newp2(X1,Y1,Z1,X2,Y2,Z2) :- Z1=<9, Z3=Z1+1,newp2(X1,Y1,Z3,X2,Y2,Z2)
newp2(X1,Y1,Z1,X1,Y1,Z1) :- Z1>=10.

NLR strategy

Input: a set VC of CHCs
Output: VCNLR

VCNLR := ∅;
Defs := {incorrectNLR :- incorrect };

while there exists d in Defs to be processed do
 Cls = UNFOLDING(d,VC);
 Defs = Defs U DEFINITION-INTRODUCTION(Cls);
 VCNLR = VCNLR U FOLDING(Cls, Defs);
 mark d as processed;
done

Thm. Termination and correctness of the NLR strategy

(i) the NLR strategy terminates
(ii) incorrect ∈ M(VC) iff incorrectNLR ∈ M(VCNLR)

incorrectNLR :- incorrect
● UNFOLDING (replace leftmost atom incorrect with the body of its definition)

incorrectNLR :- X1>=0, newp1(X1,Y1, X2,Y2), Y2=<0.
● DEFINITION-INTRODUCTION (add a clause with a new head predicate and linking vars)

d1: newp3(X1,Y2) :- newp1(X1,Y1, X2,Y2)
● FOLDING (replace an instance of the body of a definition by its head)

incorrectNLR :- X1>=0, newp3(X1,Y2), Y2=<0.
● UNFOLDING (of d1)

 newp3(X1,Z2) :- Z1=X1+1, newp2(X1,Y1,Z1,X2, Y2, Z2).
● DEFINITION-INTRODUCTION

d2: newp4(X1,Z1,Z2) :- newp2(X1,Y1,Z1,X2, Y2, Z2).
● FOLDING

 newp3(X1,Z2) :- Z1=X1+1, newp4(X1,Z1,Z2). …. continues ...

NLR strategy in action

● UNFOLDING

newp4(X1,Z1,Z2) :- Z1=<9, Z3=Z1+1, newp2(X1,Y1,Z3, X2, Y2, Z2).

newp4(X1,Z1,Z1) :- Z1>=10.
● DEFINITION-INTRODUCTION (no new definition, reuse already introduced definition)

d2: newp4(X1,Z1,Z2) :- newp2(X1,Y1,Z1,X2, Y2, Z2).
● FOLDING

newp4(X1,Z1,Z2) :- Z1=<9, Z3=Z1+1, newp4(X1,Z3,Z2).

NLR strategy in action

Verification Conditions after NLR

incorrectNLR :- X1>=0, newp3(X1,Y2), Y2=<0.
newp3(X1,Z2) :- Z1=X1+1, newp4(X1,Z1,Z2).
newp4(X1,Z1,Z2) :- Z1=<9, Z3=Z1+1,newp4(X1,Z3,Z2)
newp4(X1,Z1,Z1) :- Z1>=10.

● What if there are calls to the same predicate having different sets of linking variables?

– r(X) :- X>0, p(X,Y,Z). s(Y) :- Y=1, p(X,Y,Z).
● We could introduce a definition for every different set of variables

– d1: newp1(X) :- p(X,Y,Z).
– d2: newp2(Y) :- p(X,Y,Z).

Risk of exponential increase of the number of definitions !

● Assume that d1 is currently the only definition for p(X,Y,Z)

instead of introducing d2, we replace d1 with

d3: newp3(X,Y) :- p(X,Y,Z).
intersection of non-linking variables (i.e. union of head variables)

● Thus, VCs after NLR have the same size (number of predicates and clauses) of the
input VCs, but hopefully less variables.

NLR strategy - generalization

Constrained FAR - motivation

● variable X1 plays no role in the (model of) newp4
… it does not occur in the constraints and it does not “change”

newp4(X1,Z1,Z2) holds iff newp4(X1, Z1,Z2) holds

● … but X1 could not be removed by NLR

We extend to CHC the FAR algorithm [Leuschel et al, '96]

Verification Conditions after NLR
...
newp4(X1,Z1,Z2) :- Z1=<9, Z3=Z1+1,newp4(X1,Z3,Z2)
newp4(X1,Z1,Z1) :- Z1>=10.

Constrained FAR

● An erasure E is a set of pairs (p,k) where p is a predicate symbol of arity n
and 1≤ k ≤ n

● Given an erasure E={(p,2), (q,1)} and clause C: r(X,Y,Z) :- X=Z, p(X,Y), q(Z).

the erased clause CE: r(X,Y,Z) :- X=Z, p(X), q.

● Erasure E is safe for P iff for all (p,k) ∈ E and for all p(X1,...,Xn) :- c, G in P

– Xk is a variable and where

– Xk is not constrained to any other variable in H

– Xk is not constrained to any variable in GE

● If E is a safe erasure for program P then for all atoms B

B ∈ M(P) iff BE ∈ M(PE)

Constrained FAR algorithm

Thm. Termination and correctness of the cFAR algorithm

The cFAR algorithm terminates and

 incorrect ∈ M(P) iff incorrectE ∈ M(PE)

Let E = {(p,k) | p of arity n and 1≤ k ≤ n } be the full erasure
repeat

if E is an unsafe erasure due to some (p,k) ∈ E
then E = E – {(p,k)}

until E is a safe erasure

NLR vs cFAR

● NLR and cFAR are incomparable in general
● cFAR cannot erase variables that occur multiple

times in the head of a clause
q(Z) :- p(X,Y,Z).
p(X,X,Z).

… but NLR can
newq(Z) :- newp(Z).
newp(Z).

Experimental evaluation

● 320 verification problems written in the C language
– from TACAS SV-COMP, other public benchmarks

● Z3 with default options (slicing on)

Conclusions
● Removing unnecessary variables may help

Horn solvers
● Future work

– Apply to VCs generated by other tools
– Experiment with different solvers

● Benchmarks, VCs and tool at
 http://map.uniroma2.it/vcgen/

