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Temporal logics has long been recognised as a fundamental approach to the formal specification
and verification of reactive systems. In this paper, we take on the problem of automatically verifying
temporal property, given by a CTL formula, for a given (possibly infinite-state) program. We propose
a method based on encoding the problem as a set of Horn constraints. The method takes a program,
modeled as a transition system, and a property given by a CTL formula as input. It first generates
a set of forall-exists quantified Horn constraints and well-foundedness constraints by exploiting the
syntactic structure of the CTL formula. Then, the generated set of constraints are solved by applying
an off-the-shelf Horn constraints solving engine. The program is said to satisfy the property if and
only if the generated set of constraints has a solution. We demonstrate the practical promises of the
method by applying it on a set of challenging examples. Although our method is based on a generic
Horn constraint solving engine, it is able to outperform state-of-art methods specialised for CTL
verification.

1 Introduction

Since Pnueli’s pioneering work [25], temporal logics has long been recognised as a fundamental approach
to the formal specification and verification of reactive systems [13, 22]. Temporal logics allow precise
specification of complex properties. There has been decades of effort on temporal verification of finite
state systems [3, 5, 6, 21]. For CTL and other state-based properties, the standard procedure is to adapt
bottom-up (or tableaux) techniques for reasoning on finite-state systems. In additional, various classes
of temporal logics support model-checking whose success over the last twenty years is allowing large
and complex (finite) systems to be verified automatically [3, 7, 18, 23]. In recent decades, however, the
research focus has shifted to infinite-state systems in general and on software systems in particular as
ensuring correctness for software is in high demand. Most algorithms for verifying CTL properties on
infinite-state systems typically involve first abstracting the state space into a finite-state model, and then
applying finite reasoning strategies on the abstract model. There is also a lot of effort on algorithms
that are focused on a particular fragment of CTL, such as the universal fragment [24] and the existential
fragment [17], or some particular classes of infinite-state systems such as pushdown processes [26–29]
or parameterised systems [12, 14].

In this paper, we take on the problem of automatically verifying CTL properties for a given (possibly
infinite-state) program. We propose a method based on solving a set of forall-exists quantified Horn con-
straints. Our method takes a program P modeled by a transition system (init(v),next(v,v′)) and a property
given by a CTL formula ϕ(v), and then it checks if P satisfies ϕ(v), i.e., if (init(v),next(v,v′)) |=CTL ϕ(v).
The method first generates a set of forall-exists quantified Horn constraints with well-foundedness con-
ditions by exploiting the syntactic structure of the CTL formula ϕ(v). It then solves the generated set of
Horn constraints by applying an off-the-shelf solving engine E-HSF [1] for such constraints. We claim
that P satisfies ϕ(v) if and only if the generated set of Horn constraints has a solution. We demonstrate
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the practical applicability of the method by presenting experimental evaluation using examples from the
PostgreSQL database server, the SoftUpdates patch system, the Windows OS kernel.

The rest of the paper is organised as follows. We start by revising the syntax and semantics of
CTL and by a brief introduction of forall-exists quantified Horn constraints and their solver E-HSF in
Section 2. In Section 3, we present our CTL proof system that generates a set of forall-exists quantified
Horn constraints for a given verification problem. We illustrate application of the proof rules on an
example in Section 4. The experimental evaluation of our method is given in Section 5. Finally, we
present a bief discussion on related works in Section 6 and concluding remarks in Section 7.

2 Preliminiaries

2.1 CTL basics

In this section, we review the syntax and the semantics of the logic CTL following [20]. Let T be a
first order theory and |=T denote its satisfaction relation that we use to describe sets and relations over
program states. Let c range over assertions in T and x range over variables. A CTL formula ϕ is defined
by the following grammar using the notion of a path formula φ .

ϕ ::= c | ϕ ∧ϕ | ϕ ∨ϕ | Aφ | E φ

φ ::= Xϕ | Gϕ | ϕUϕ

As usual, we define Fϕ = (trueUϕ). The satisfaction relation P |= ϕ holds if and only if for each s
such that init(s) we have P,s |= ϕ . We define P,s |= ϕ as follows using an auxiliary satisfaction relation
P,π |= φ .

P,s |= c iff s |=T c

P,s |= ϕ1∧ϕ2 iff P,s |= ϕ1 and P,s |= ϕ2

P,s |= ϕ1∨ϕ2 iff P,s |= ϕ1 or P,s |= ϕ2

P,s |= Aφ iff for all π ∈ΠP(s) holds P,π |= φ

P,s |= E φ iff exists π ∈ΠP(s) such that P,π |= φ

P,π |= Xϕ iff π = s1,s2, . . . and P,s2 |= ϕ

P,π |= Gϕ iff π = s1,s2, . . . for all i≥ 1 holds P,si |= ϕ

P,π |= ϕ1Uϕ2 iff π = s1,s2, . . . and exists j ≥ 1 such that

P,s j |= ϕ2 and P,si |= ϕ1 for 1≤ i≤ j

In this paper, we represent a satisfaction relation P |= ϕ by the relation P |=CTL ϕ to explicitly indicate
that ϕ is a CTL formula. We call such relation a CTL satisfaction, and ϕ is said to be its formula.

2.2 The solving algorithm E-HSF

Our proof rules are automated using the E-HSF engine for resolving forall-exists Horn-like clauses
extended with well-foundedness criteria.

We skip the syntax and semantics of the clauses targeted by this system — see [1] for more details.
Instead, we illustrate these clauses with the following example:

x≥ 0→∃y : x≥ y∧ rank(x,y), rank(x,y)→ ti(x,y),

ti(x,y)∧ rank(y,z)→ ti(x,z), dwf (ti).
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Intuitively, these clauses represent an assertion over the interpretation of “query symbols” rank and ti
(the predicate dwf represents disjunctive well-foundedness, and is not a query symbol). The semantics
of these clauses maps each predicate symbol occurring in them into a constraint over v.

Specifically, the above set of clauses has a solution that maps both rank(x,y) and ti(x,y) to the
constraint (x≥ 0∧ y≥ x−1).

E-HSF resolves clauses like the above using a CEGAR scheme to discover witnesses for existen-
tially quantified variables. The refinement loop collects a global constraint that declaratively determines
which witnesses can be chosen. The chosen witnesses are used to replace existential quantification, and
then the resulting universally quantified clauses are passed to a solver for such clauses. At this step,
we can benefit from emergent tools in the area of solving Horn clauses over decidable theories, e.g.,
HSF [15] or µZ [19]. Such a solver either finds a solution, i.e., a model for uninterpreted relations con-
strained by the clauses, or returns a counterexample, which is a resolution tree (or DAG) representing
a contradiction. E-HSF turns the counterexample into an additional constraint on the set of witness
candidates, and continues with the next iteration of the refinement loop. Notably, this refinement loop
conjoins constraints that are obtained for all discovered counterexamples. This way E-HSF guarantees
that previously handled counterexamples are not rediscovered and that a wrong choice of witnesses can
be mended.

For the existential clause above, E-HSF introduces a witness/Skolem relation rel over variables x
and y, i.e., x ≥ 0∧ rel(x,y)→ x ≥ y∧ rank(x,y). In addition, since for each x such that x ≥ 0 holds we
need a value y, we require that such x is in the domain of the Skolem relation using an additional clause
x≥ 0→∃y : rel(x,y). In the E-HSF approach, the search space of a skolem relation rel(x,y) is restricted
by a template function TEMPL(rel)(x,y). In general, E-HSF requires such template functions to be given
by the user.

3 Proof system

Our CTL verification method encodes the verification problem as a problem of solving forall-exists
quantified Horn constraints with well-foundedness conditions. This is done by applying a proof system
that consists of various proof rules for handling different kinds of CTL formulas. This proof system is
based on a deductive proof system for CTL* from [20] which is adapted in this work to be suitable from
the perspective of constraint generation for a CTL satisfaction.

Given a transition system (init(v),next(v,v′)) and a CTL formula ϕ(v), the appropriate proof rules are
used from the proof system to generate the corresponding set of Horn constraints for the CTL satisfaction
(init(v),next(v,v′)) |=CTL ϕ(v). There are two sets of proof rules in the proof system.

3.1 Proof rules for decomposition

These proof rules are applied recursively to a CTL satisfaction whose formula is neither an assertion nor
a basic CTL state formula. The proof rules decompose the given CTL formula into new sub-formulas
by following the nesting structure of the formula. Then, the original satisfaction is reduced to new
satisfactions over the new sub-formulas and a Horn constraint relating the new satisfactions.

There are different proof rules depending on the outer-most operator of the formula. One case is
when the given formula f (ψ(v)) nests another formula ψ(v) such that the outer-most operator f is a pair
of a temporal path operator and a unary temporal state operator, i.e., f ∈ {AX ,AG,AF,EX ,EG,EF}. The
corresponding proof rule RULECTLDECOMPUNI is given in Figure 1 that shows how such satisfactions
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are decomposed. Another case is when the given formula has a structure f (ψ1(v), ψ2(v)) nesting the

Given a CTL formula f (ψ(v)) where f ∈ {AX ,AG,AF,EX ,EG,EF}, and a transition system
(p(v),next(v,v′)), find an assertion q(v) such that:

(p(v),next(v,v′)) |=CTL f (q(v)) (q(v),next(v,v′)) |=CTL ψ(v)

(p(v),next(v,v′)) |=CTL f (ψ(v))

Figure 1: Proof rule RULECTLDECOMPUNI

formulas ψ1(v) and ψ2(v) such that the outer-most operator f is either a pair of a temporal path operator
and the state operator until or a disjunction/conjunction, i.e., f ∈ {AU,EU,∧,∨}. Note that when f is
∧ (resp. ∨), the given formula f (ψ1(v), ψ2(v)) corresponds to ψ1(v)∧ψ2(v) (resp ψ1(v)∨ψ2(v)). The
corresponding proof rule RULECTLDECOMPBIN is given in Figure 2 that shows how such satisfactions
are decomposed.

Given a CTL formula f (ψ1(v), ψ2(v)) where f ∈ {AU,EU,∧,∨}, and a transition system
(p(v),next(v,v′)), find assertions q1(v) and q2(v) such that:

p(v)→ f (q1(v),q2(v)),
(q1(v),next(v,v′)) |=CTL ψ1(v) (q2(v),next(v,v′)) |=CTL ψ2(v)

(p(v),next(v,v′)) |=CTL f (ψ1(v),ψ2(v))

Figure 2: Proof rule RULECTLDECOMPBIN

3.2 Proof rules for constraints generation

This set of proof rules are applied to a CTL satisfaction whose formula is either an assertion or a basic
state formula. Any CTL satisfaction can be decomposed into a set of such simple CTL satisfactions
by applying the proof rules from the previous section. The next step will be to generate forall-exists
quantified Horn constraints (possibly with well-foundedness condition) that constrain a set of auxiliary
assertions over program states.

The simplest of all is the proof rule RULECTLINIT, see Figure 3, which is applied when the CTL
formula is an assertion.

The proof rules RULECTLEX (see Figure 4), RULECTLEG (see Figure 5), and RULECTLEU (see
Figure 6) are applied for generating Horn constraints when the CTL formula is a basic state formula with
existential path operator.

The corresponding proof rules for generating Horn constraints when the CTL formula is a basic state
formula with universal path operator are given in the appendix section.
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For a CTL formula given by the assertion ψ(v), and a transition system (p(v),next(v,v′)):

p(v)→ ψ(v)

(p(v),next(v,v′)) |=CTL ψ(v)

Figure 3: Proof rule RULECTLINIT

p(v)→∃v′ : next(v,v′)∧q(v′)

(p(v),next(v,v′)) |=CTL EX q(v)

Figure 4: Proof rule RULECTLEX

4 Constraint generation

The contraint generation procedure performs a top-down, recursive descent through the syntax tree of
the given CTL formula. At each level of recursion, the procedure takes as input a CTL satisfaction
(p(v),next(v,v′)) |=CTL ϕ , where ϕ is a CTL formula, and assertions p(v) and next(v,v′) describe a set of
states and a transition relation, respectively. The constraint generation procedure applies proof rules from
the proof system presented in the previous section to recursively decompose complex satisfactions and
eventually generate forall-exists quantified Horn constraints with well-foundedness conditions. Before
starting the actual constraint generation, the procedure recursively re-writes the input satisfaction of a
given CTL formula with arbitrary structure into a set of satisfactions of simple CTL formulas where
each simple formula is either a basic CTL state formula or an assertion over the background theory.
The procedure then takes each satisfaction involving simple formula, introduces auxiliary predicates and
generates a sequence of forall-exists quantified Horn constraints and well-foundedness constraints (when
needed) over these predicates.

Complexity and Correctness The procedure performs a single top-down descent through the syntax
tree of the given CTL formula ϕ . The run time and the size of the generated constraints is linear in the size
of ϕ . Finding a solution for the generated Horn constraints is undecidable in general. In practice however,
our solving algorithm E-HSF often succeeds in finding a solution (see Section ??). We formalize the
correctness of the constraint generation procedure in the following theorem.

Theorem 1. For a given program P with init(v) and next(v,v′) over v and a CTL formula ϕ the Horn
constraints generated from (p(v),next(v,v′)) |=CTL ϕ are satisfiable if and only if P |= ϕ .

The proof can be found in [20].

Example Let us consider the program given in Figure 7. It contains the variable rho which is as-
signed a non-deterministic value at Line 4. This assignment results in the program control to move
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Find an assertion inv(v) such that:

p(v)→ inv(v)
inv(v)→∃v′ : next(v,v′)∧ inv(v′)

inv(v)→ q(v)

(p(v),next(v,v′)) |=CTL EG q(v)

Figure 5: Proof rule RULECTLEG

Find assertions inv(v), rank(v,v′) and ti(v,v′) such that:

p(v)→ inv(v)
inv(v)∧¬r(v)→ q(v)∧∃v′ : next(v,v′)∧ inv(v′)∧ rank(v,v′)

rank(v,v′)→ ti(v,v′)

ti(v,v′)∧ rank(v′,v′′)→ ti(v,v′′)

dwf (ti)

(p(v),next(v,v′)) |=CTL EU(q(v),r(v))

Figure 6: Proof rule RULECTLEU

non-deterministically following the evaluation of the condition at Line 6. It is common to verify such
programs with respect to various CTL properties as the non-determinism results in different computation
paths of the program. Now, we would like to verify the example program with respect to the CTL prop-
erty AG(EF (WItemsNum≥ 1)), i.e., from every reachable state of the program, there exists a path to a
state where WItemsNum has a positive integer value.

We can make the following observations about the program. The value of the variable WItemsNum
is not set initially. Therefore, the property is checked for any arbitrary initial value of WItemsNum.
The verification problem is more interesting for the case when WItemsNum has a non-positive integer
value. This is because depending on how the variable rho is instantiated at Line 4, we may get a path
that will not reach a state where WItemsNum gets a positive integer value. For example, if we assume
WItemsNum has the value 0 initially and WItemsNum is instantiated to the value 1, the program control
swings between the two internal loops by keeping the value of WItemsNum the same. This resulting
path will not reach the state with WItemsNum ≥ 1. However, if rho is assigned a non-positive value, no
matter what the value of rho is initially, it will eventually reach a value greater than 5 before exiting the
first nested loop. Such path will eventually reach the state with WItemsNum ≥ 1 and hence the program
satisfies the CTL property AG(EF (WItemsNum≥ 1)).

Our method abstracts away from the concrete syntax of a programming language by modeling a
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i n t main ( ) {
1 : w h i l e ( 1 ) {
2 : w h i l e ( 1 ) {

rho = no nde t ( ) ;
3 : i f ( WItemsNum<=5) {
4 : i f ( rho >0) b r e a k ; }
5 : WItemsNum++;
6 : }
7 : w h i l e ( 1 ) {
8 : i f ( ! ( WItemsNum>2)) b r e a k ;
9 : WItemsNum−−;
1 0 : }
1 1 : }
1 2 : }

Figure 7: An example program

program as a transition system. The transition system for our example program is given below.

v = (w, pc).

init(v) = (pc = 1).

next(v,v′) = (pc = `1∧pc′1 = `2∧w′ = w ∨
pc = `2∧pc′1 = `3∧w′ = w ∨
pc = `3∧w≤ 5∧pc′1 = `4∧w′ = w ∨
pc = `3∧w > 5∧pc′1 = `5∧w′ = w ∨
pc = `4∧pc′1 = `5∧w′ = w ∨
pc = `4∧pc′1 = `7∧w′ = w ∨
pc = `5∧pc′1 = `6∧w′ = w+1 ∨
pc = `6∧pc′1 = `3∧w′ = w ∨
pc = `7∧pc′1 = `8∧w′ = w ∨
pc = `8∧w≤ 2∧pc′1 = `11∧w′ = w ∨
pc = `8∧w > 2∧pc′1 = `9∧w′ = w ∨
pc = `9∧pc′1 = `10∧w′ = w−1 ∨
pc = `10∧pc′1 = `8∧w′ = w).

In the tuple of program variables v, w corresponds to the program variable WItemsNum and pc is the pro-
gram counter variable. The problem of verifying the program with respect to the given property amounts
to checking if (init(v),next(v,v′)) satisfies AG(EF(w≥ 1)), i.e., if the satisfaction (init(v),next(v,v′)) |=CTL

AG(EF(w ≥ 1)) holds. Our method first generates a set of Horn constraint corresponding to the verifi-
cation problem by applying the proof system.

We start constraint generation by considering the nesting structure of AG(EF(w≥ 1)). Since AG(EF(w≥
1)) has AG as the outer-most operator, we apply RULECTLDECOMPUNI from Figure 1 to split the origi-
nal satisfaction (init(v),next(v,v′)) |=CTL AG(EF(w≥ 1)) into a reduced satisfaction (init(v),next(v,v′)) |=CTL
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AG(p1(v)) and a new satisfaction (p1(v),next(v,v′)) |=CTL EF(w≥ 1). We need to solve for the auxiliary
assertion p1(v) satisfying both of the satisfactions.

One one hand, the assertion p1(v) corresponds to a set of program states that needs to be discovered
form the initial state. This is represented by the new satisfaction (init(v),next(v,v′)) |=CTL AG(p1(v))
which is reduced directly to a set of Horn constraints by applying RULECTLAG from Figure 9. This set
of Horn constraints is over an auxiliary predicate inv1(v) and given below.

init(v)→ inv1(v),

inv1(v)∧next(v,v′)→ inv1(v′),

inv1(v)→ p1(v).

On the other hand, we require the formula EF(w ≥ 1), which was nested in the main formula
AG(EF(w≥ 1)), must be satisfied from the set of states represented by p1(v). This is represented by the
new satisfaction (p1(v),next(v,v′)) |=CTL EF(w≥ 1). Unlike the reduced satisfaction above, this satisfac-
tion is not always reduced directly to Horn constraints rather it can be reduced into simpler satisfactions if
possible. Since EF(w ≥ 1) has EF as the outer-most operator, we apply again RULECTLDECOMPUNI

from Figure 1 to split the satisfaction (p1(v),next(v,v′)) |=CTL EF(w ≥ 1) into a reduced satisfaction
(p1(v),next(v,v′)) |=CTL EF(p2(v)) and a new satisfaction (p2(v),next(v,v′)) |=CTL w≥ 1. Here also, we
need to solve for the auxiliary assertion p2(v) satisfying both of the satisfactions.

The reduced satisfaction (p1(v),next(v,v′)) |=CTL EF(p2(v)) is reduced directly to a set of Horn con-
straints by applying RULECTLEF from Figure 11. Due to the existential path quantifier in (p1(v),next(v,v′)) |=CTL

EF(p2(v)), we obtain clauses that contain existential quantification. We deal with the eventuality by im-
posing a well-foundedness condition. This set of Horn constraints is over an auxiliary assertions inv2(v),
rank(v,v′), and ti(v,v′) and given below.

p1(v)→ inv2(v),

inv2(v)∧¬p2(v)→∃v′ : next(v,v′)∧ inv(v′)∧ rank(v,v′),

rank(v,v′)→ ti(v,v′),

ti(v,v′)∧ rank(v,v′)→ ti(v,v′′),

dwf (ti).

Coming to the new satisfaction (p2(v),next(v,v′)) |=CTL w≥ 1, we see that its formula w≥ 1 is an as-
sertion with no temporal operators. Since no further decomposition is possible, we apply RULECTLINIT

from Figure 3 to generate directly the clause:

p2(v)→ w≥ 1

As the original satisfaction (init(v),next(v,v′)) |=CTL AG(EF(w≥ 1)) is reduced into the satisfactions
(init(v),next(v,v′)) |=CTL AG(p1(v)), (p1(v),next(v,v′)) |=CTL EF(p2(v)) and (p2(v),next(v,v′)) |=CTL

w ≥ 1, the constraints for the original satisfaction will be the union of the constraints for each of the
decomposed satisfactions. The Horn constraints are over the auxiliary assertions p1(v), inv1(v), p2(v),
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inv2(v), rank(v,v′), and ti(v,v′), and they are given below.

init(v)→ inv1(v),

inv1(v)∧next(v,v′)→ inv1(v′),

inv1(v)→ p1(v),

p1(v)→ inv2(v),

inv2(v)∧¬p2(v)→∃v′ : next(v,v′)∧ inv(v′)∧ rank(v,v′),

rank(v,v′)→ ti(v,v′),

ti(v,v′)∧ rank(v,v′)→ ti(v,v′′),

dwf (ti)

p2(v)→ w≥ 1

This will be the final output of our Horn constraint generation procedure.

5 Evaluation

We evaluate our method of CTL verification by applying the implementation of the E-HSF solver on a
set of industrial benchmarks from [9, Figure 7]. These benchmarks consists of seven programs: Windows
OS fragment 1, Windows OS fragment 2, Windows OS fragment 3, Windows OS fragment 4,
Windows OS fragment 5, PostgreSQL pgarch and Software Updates. For each of these pro-
grams, four slightly different versions are considered for evaluation. In general, the four versions of a
given program are the same in terms of the main logic of the program and what the program does, but
they may differ on the value assigned to a particular variable or the condition for exiting a loop, etc. This
gives us in total a set of 28 programs. Each such program P is given with a CTL property ϕ , and there
are two verification tasks associated with it: P |=CTL ϕ and P |=CTL ¬ϕ . The existence of a proof for a
property ϕ for P implies that ¬ϕ is violated by the same program P, and similarly, a proof for ¬ϕ for P
implies that ϕ is violated by P. However, it may also be the case that both P 6|=CTL ϕ and P 6|=CTL ¬ϕ do
not hold.

Templates: As discussed in section 2.2, E-HSF requires the template functions to be provided by the
user for relations with existentially quantified variables. For the application of CTL verification, which
is the main topic of interest in the paper, we claim that the transition relation next(v,v′) can be used as a
template by adding constraints at each location of non-determinism. There are two kinds of constraints
that can be added depending on the two types of possible non-determinism in next(v,v′).

• non-deterministic guards: this is the case when next(v,v′) has a set of more than one disjuncts
with the same guard, i.e., there can be more than one enabled moves from a certain state of the
program. For each such set, we introduce a fresh case-splitting variable and we strengthen the
guard of each disjunct by adding a distinct constraint on the fresh variable. For example, if the
set has n disjuncts and B is a fresh variable, we add the constraint B = i for each disjunct i where
1 ≤ i ≤ n. To reason about existentially quantified queries, then it will suffices to instantiate B to
one of the values in the range 1 . . .n. Such reasoning is done by the E-HSF solver.

• non-deterministic assignments: this is the case when next(v,v′) has a disjunct in which some
w′, which is a subset of v′, is left unconstrained in the disjunct. In such case, we strengthen the
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disjunct by adding the constraint x′ = Tx ∗ v+ tx as conjunct for each variable x′ in w′. Solving for
Tx and tx is done by the E-HSF solver.

In our CTL verification examples, both non-deterministic guards and assignments are explicitly marked
in the original benchmark programs using names rho1,rho2, etc. We apply the techniques discussed
above to generate templates from the transition relation of each program. In these examples, linear tem-
plates are sufficiently expressive. For direct comparison with the results from [9], we used template
functions corresponding to the rho-variables. The quantifier elimination in ∃v′ : next(v,v′) can be au-
tomated for the theory of linear arithmetic. For dealing with well-foundedness we use linear ranking
functions, and hence corresponding linear templates for DECREASET and BOUNDT.

Program P Property ϕ P |=CTL ϕ P |=CTL ¬ϕ

Result Time(s) Result Time(s)

Windows OS fragment 1

(29 LOC)

AG(p→ AFq) X 0.3 × 0.3
EF(p∧EGq) X 0.3 × 0.3
AG(p→ EFq) X 0.3 × 0.3
EF(p∧AGq) X 0.3 × 0.3

Windows OS fragment 2

(58 LOC)

AG(p→ AFq) X 0.4 × 0.3
EF(p∧EGq) X 0.4 × 0.3
AG(p→ EFq) X 0.4 × 0.3
EF(p∧AGq) X 0.4 × 0.3

Windows OS fragment 3

(370 LOC)

AG(p→ AFq) X 0.6 × 1.2
EF(p∧EGq) X 9.4 × 0.5
AG(p→ EFq) X 0.7 × 0.8
EF(p∧AGq) X 0.9 × 1.1

Windows OS fragment 4

(380 LOC)

AF p∨AFq X 5.7 × 5.2
EGp∧EGq X 0.3 × 1.0
EF p∧EFq X 5.0 × 0.3
AGp∨AGq X 0.3 × 6.4

Windows OS fragment 5

(43 LOC)

AG(AF p) X 0.3 × 0.3
EF(EGp) X 0.3 × 0.3
AG(EF p) X 0.3 × 0.3
EF(AGp) X 0.3 × 0.3

PostgreSQL pgarch

(70 LOC)

AG(AF p) X 0.4 × 0.3
EF(EGp) X 0.3 × 0.4
AG(EF p) X 0.3 × 0.3
EF(AGp) X 0.3 × 0.3

Software Updates

(35 LOC)

p→ EFq X 0.6 × 0.2
p∧EGq × 0.3 × 0.4
p→ AFq × 0.2 × 0.2
p∧AGq × 0.3 × 0.3

Table 1: CTL verification on industrial benchmarks

We report the results in Table 1. For each program in Column 1, we report the shape of the property
φ in Column 2. The variables p and q in Column 2 range over the theory of quantifier-free linear
integer arithmetic. The result as well as the time it took the E-HSF engine to prove the property ϕ is
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given in Columns 3 and 4, and similarly, the result as well as the time it took the engine to discover a
counterexample for the negated property ¬ϕ is given in Columns 5 and 6. The symbol X marks the cases
where E-HSF was able to find a solution, i.e., a proof that the CTL property ϕ is valid, and the symbol
× marks the cases where E-HSF was able to find a counter-example, i.e., a proof that the negated CTL
property ¬ϕ is not valid. The number of LOC of each program is also given in Column 1.

The E-HSF engine is able to find proofs that the CTL property ϕ is valid (and the negated CTL
property ¬ϕ is not valid) for all of the programs except the last three programs. For the last three
versions of Software Updates, not only the negated CTL property ¬ϕ but also the CTL property ϕ is
not valid. This was because ϕ was satisfied only for some initial states. The method takes a total time of
52 seconds to complete the verifications tasks.

Program P Property ϕ P |=CTL ϕ P |=CTL ¬ϕ

E-HSF Cook [8] E-HSF Cook [8]

Windows OS fragment 1

(29 LOC)

AG(p→ AFq) 0.3 1.0 0.3 1.4
EF(p∧EGq) 0.3 0.1 0.3 0.7
AG(p→ EFq) 0.3 0.1 0.3 0.1
EF(p∧AGq) 0.3 0.1 0.3 0.1

Windows OS fragment 2

(58 LOC)

EF(p∧EGq) 0.4 1.0 0.3 1.2
EF(p∧AGq) 0.4 0.8 0.3 0.2

Windows OS fragment 3

(370 LOC)

AG(p→ AFq) 0.6 5.9 1.2 6.2
EF(p∧EGq) 9.4 2.3 0.5 6.0
AG(p→ EFq) 0.7 6.8 0.8 3.4
EF(p∧AGq) 0.9 4.7 1.1 3.1

Windows OS fragment 4

(380 LOC)

AF p∨AFq 5.7 18.5 5.2 13.9
EGp∧EGq 0.3 13.5 1.0 14.2
EF p∧EFq 5.0 14.7 0.3 4.8
AGp∨AGq 0.3 8.0 6.4 3.7

Windows OS fragment 5

(43 LOC)

AG(AF p) 0.3 1.0 0.3 0.2
EF(EGp) 0.3 0.1 0.3 0.0
AG(EF p) 0.3 1.0 0.3 0.0
EF(AGp) 0.3 0.1 0.3 0.1

PostgreSQL pgarch

(70 LOC)

AG(AF p) 0.4 2.0 0.3 1.3
EF(EGp) 0.3 0.1 0.4 0.1
AG(EF p) 0.3 2.0 0.3 0.0
EF(AGp) 0.3 2.0 0.3 2.4

Table 2: Comparison of our results with Cook [8, Figure 11]

Our method also compares favourably with state-of-art automated CTL verification methods. We
present in Table 2 the comparison between the our solving algorithm E-HSF and a CTL verification
method from Cook [8]. Here also, we use the programs from Table 1, however, for the sake of focusing
on the comparison, we exclude programs for which the two methods have different outcomes. For each
program in Column 1, we report the shape of the property in Column 2. The time it takes E-HSF to
prove the property ϕ is given in Column 3, and the corresponding time for Cook [8] is given in Column 4.
Similarly, the time it takes E-HSF to discover a counterexample for the negated property ¬ϕ is given in
Column 5, and the corresponding time for Cook [8] is given in Column 6.



12 Efficient CTL Verification via Generic Horn Constraints Solving

From the result, we can see that while E-HSF takes a total of 48 seconds to finish the task, Cook [8]
takes a total of 149 seconds. This amounts to an approximate reduction of 70%. There are a few cases
where E-HSF takes longer than Cook [8]. We suspect that a more efficient modeling of the original c
program as a transition system can help our method a lot. The presence of many temporary program
variables in the transition relation which are not involved in any computation of the program can affect
the performance of our method.

In general, although our method uses generic horn constraints solving engine, which is not specific
to CTL verification, it is able to out-perform the state-of-art automated CTL verification method.

6 Related work

Verification of properties specified in temporal logics such as CTL has been extensively explored for
finite-state systems [3, 5, 6, 21]. There has also been studies on the verification of CTL properties for
some restricted types of infinite-state systems. Some examples are pushdown processes [27, 28], push-
down games [29], and parameterised systems [14]. For such restricted systems, the standard procedure
is to abstract the infinite-state system model into finite-state model and apply the known methods for
finite-state systems. But existing abstraction methods usually do not allow reliable verification of CTL
properties where alternation between universal and existential modal operators is common. Many meth-
ods of proving CTL properties with only universal path quantifiers are known [4, 10]. There also a few
methods mainly focused on proving branching-time properties with only existential path quantifiers. One
example is the tool Yasm [17] which implements a proof procedure aimed primarily at the non-nested
existential subset of CTL. There are also known techniques for proving program termination (resp. non-
termination) [2, 11] which is equivalent with proving the CTL formula AF f alse (resp. EG true) [16].

The first known automatic proof method that supports both universal and existential branching-time
modal operators for (possibly infinite-state) programs is proposed in [9]. The approach is based on
reducing existential reasoning to universal reasoning when an appropriate restriction is placed on the the
state-space of the system. While this approach comes close to our approach, the refinement procedure
for state-space restrictions may make incorrect choices early during the iterative proof search. These
choices may limit the choices available later in the search leading to failed proof attempts in some cases.

7 Conclusion

In this paper, we proposed a method of verifying CTL properties with respect to a (possibly infinite-
space) program. The method takes a transition system that models the input program and a CTL formula
specifying the property to prove as inputs. It first applies known proof systems to generate forall-exists
quantified Horn constraints with well-foundedness conditions by the taking the transition system and the
CTL formula. Then, it applies the solving algorithms E-HSF to solve the set of Horn constraints. The
defining feature of this approach is the separation of concerns between the encoding and the solving of
the verification problem. We also demonstrate the practical applicability of the approach by presenting
an experimental evaluation using examples from the PostgreSQL database server, the SoftUpdates patch
system, the Windows OS kernel.
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A More proof rules for constraints generation

The proof rules RULECTLAX (see Figure 8), RULECTLAG (see Figure 9), and RULECTLAU (see
Figure 10) are applied for generating Horn constraints when the CTL formula is a basic state formula
with universal path operator.

p(v)∧next(v,v′)→ q(v′)

(p(v),next(v,v′)) |=CTL AX q(v)

Figure 8: Proof rule RULECTLAX

Find an assertion inv(v) such that:

p(v)→ inv(v)
inv(v)∧next(v,v′)→ inv(v′)

inv(v)→ q(v)

(p(v),next(v,v′)) |=CTL AG q(v)

Figure 9: Proof rule RULECTLAG

Find assertions inv(v), rank(v,v′) and ti(v,v′) such that:

p(v)→ inv(v)
inv(v)∧¬r(v)∧next(v,v′)→ q(v)∧ inv(v′)∧ rank(v,v′)

rank(v,v′)→ ti(v,v′),

ti(v,v′)∧ rank(v′,v′′)→ ti(v,v′′),

dwf (ti).

(p(v),next(v,v′)) |=CTL AU(q(v),r(v))

Figure 10: Proof rule RULECTLAU

Our proof system is not exhaustive in terms of having proof rules for all kinds of basic state formula
that can be defined in CTL. However, we utilize equivalence between CTL formulas to generate Horn
constraints for a basic state formula whose proof rule is not given in the proof system. The equivalence
between the formulas EU(true,q(v)) and EF(q(v)) is used to define RULECTLEF (see Figure 11) from
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RULECTLEU. In the same way, the equivalence between the formulas AU(true,q(v)) and AF(q(v)) is
used to define RULECTLAF (see Figure 12) from RULECTLAU.

(p(v),next(v,v′)) |=CTL EU(true,q(v))

(p(v),next(v,v′)) |=CTL EF q(v)

Figure 11: Proof rule RULECTLEF

(p(v),next(v,v′)) |=CTL AU(true,q(v))

(p(v),next(v,v′)) |=CTL AF q(v)

Figure 12: Proof rule RULECTLAF
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